Aug.09, 2023 &) ANTCHAIN | X0z Z AN

Security Assessment

Pioneer

Professional Service

Table of Contents

1. Overview
1.1. Executive Summary
1.2. Project Summary
1.3. Assessment Summary
1.4. Assessment Scope
2. Checklist
3. Findings
3.1. M-01|Business Security - Centralization Risk
3.2. I-02|Optimization Suggestion - Function Visibility Can Be External
3.3. I-03|Optimization Suggestion - Floating Pragma
3.4. I-04|Optimization Suggestion - Set the Constant to Private
3.5. I-05|Optimization Suggestion - Use CustomError Instead of String

3.6. I-06|Optimization Suggestion - Recommend to Follow Code Layout
Conventions

3.7. I-07|Optimization Suggestion - No Check of Address Params with Zero
Address

3.8. I-08|Optimization Suggestion - Use Assembly to Check Zero Address
3.9. I-09|Optimization Suggestion - Use ++i/--i Instead of i++/i--

3.10. I-10|Optimization Suggestion - Parameters Should Be Declared as
Calldata

3.11. I-11|Optimization Suggestion - Variables Can Be Declared as
Immutable

3.12. I-12|Optimization Suggestion - Functions with the Same Functionality
Should Be Implemented Consistently

3.13. I-13|Optimization Suggestion - Redundant Function getManager

3.14. I-14|Optimization Suggestion - Inaccurate Code Comments and Error
Messages

4. Disclaimer

5. Appendix

1. Overview

1.1. Executive Summary

Pioneer is a token project based on ERC20 standard. This report has been prepared for Pioneer
project to discover issues and vulnerabilities in the source code of the Pioneer project as well as
any contract dependencies that were not part of an officially recognized library. Based on the
examination we have conducted by utilizing Static Analysis, Formal Verificaton and Manual Review,
we have identified 1 medium vulnerability associated with centralization risks and 13 informational
issues.

1.2. Project Summary

Project Name Pioneer

Platform Ethereum

Language Solidity

Code Repository https://github.com/Eleven711/Pioneer
Commit f79133e1a07207fd3adf412c820893b31f840788

1.3. Assessment Summary

Delivery Date Aug.09, 2023
Audit Methodology Static Analysis, Formal Verification, Manual Review
1.4. Assessment Scope

ID File File Hash

1 /Pioneer/contracts/Prince.sol e7811eba746c410e6fcae31869b0553b

2 /Pioneer/contracts/Whitelistable.sol bb5c01b6e0e80eb8c329131be8c5a2bb

2. Checklist

2.1. Code Security

Reentrancy DelegateCall
Input Validation

Arbitrary External Call
Right-To-Left-Override Character
TxOrigin

ThisBalance

Uninitialized Variable

Affected by Compiler Bug

2.2. Optimization Suggestion

Compiler Version

Function Visibility

Externally Controlled Variables

Constant Specific

Return Value Unspecified

State Variable Defined Without Storage Location
Compare With Timestamp/Block Number/Blockhash
Delete Struct Containing the Mapping Type
Paths in the Modifier Not End with "_" or Revert
Lack of SafeMath

Tautology Issue

Redundant/Duplicated/Dead Code

Undeclared Resource

Unused Resource

2.3. Business Security

Unchecked this.call

Unchecked Owner Transfer
Unauthenticated Storage Access
Missing Checks for Return Values
VarType Deduction

Shadow Variable

Integer Overflow

Frozen Money

Do-while Continue

Risk For Weak Randomness
Diamond Inheritance

Array Length Manipulation
Divide Before Multiply

Improper State Variable Modification
Deprecated Function

Code Style

Event Specific

Inexistent Error Message

Import Issue

Constructor in Base Contract Not Implemented
Usage of '=+'

Non-payable Public Functions Use msg.value
Compiler Error/Warning

Loop Depends on Array Length

Code Complexity/Code Inefficiency

Optimizable Return Statement

The Code Implementation is Consistent With Comments, Project White Papers and Other Materials

Permission Check

Address Check

3. Findings

—_1 Medium

n Code Security

Total: 0, no vulnerabilities.

6 Optimization Suggestion
Total: 13, Informational: 13
|
Q Business Security

Total: 1, Medium: 1
|

13 Informational ————

m To Be Discussed

Medium

0 5 10 15
D Title Category Severity Status
B Business Security - ’) : To Be
M-01 Centralization Risk Business Security ® Medium Discussed
Optimization Suggestion - To Be
1-02 Function Visibility Can Be Optimization Suggestion @ Informational :
Discussed
External
B Optimization Suggestion - I . . To Be
1-03 Floating Pragma Optimization Suggestion © Informational Discussed
Optimization Suggestion - To Be
1-04 Set the Constant to Optimization Suggestion © Informational Discussed

Private

ID

1-05

1-06

1-07

1-08

1-09

I-10

I-11

I-12

I-13

I-14

Title

Optimization Suggestion -
Use CustomError Instead
of String

Optimization Suggestion -
Recommend to Follow
Code Layout Conventions

Optimization Suggestion -
No Check of Address
Params with Zero Address

Optimization Suggestion -
Use Assembly to Check
Zero Address

Optimization Suggestion -
Use ++i/--i Instead of
i++/i--

Optimization Suggestion -
Parameters Should Be
Declared as Calldata

Optimization Suggestion -
Variables Can Be Declared
as Immutable

Optimization Suggestion -
Functions with the Same
Functionality Should Be
Implemented Consistently

Optimization Suggestion -
Redundant Function
getManager

Optimization Suggestion -
Inaccurate Code
Comments and Error
Messages

Category

Optimization Suggestion

Optimization Suggestion

Optimization Suggestion

Optimization Suggestion

Optimization Suggestion

Optimization Suggestion

Optimization Suggestion

Optimization Suggestion

Optimization Suggestion

Optimization Suggestion

Severity

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Status

To Be
Discussed

To Be
Discussed

To Be
Discussed

To Be
Discussed

To Be
Discussed

To Be
Discussed

To Be
Discussed

To Be
Discussed

To Be
Discussed

To Be
Discussed

M-01|Business Security - Centralization Risk

ﬂ Medium : Business Security
File Location : /Pioneer/contracts/Prince.sol:155-158,81-91,100-113,61-73

Description

The manager role possesses three unrestricted privileges.
Firstly, the manager can burn tokens at any address.

Secondly, the manager has the authorization to transfer tokens from one address within the
whitelist to another whitelisted address.

Thirdly, only whitelisted addresses are authorized to invoke the transfer and transferFrom
functions. However, the manager has the exclusive privilege to remove addresses from the
whitelist. The removal of an address from the whitelist would result in the tokens associated with
that address being effectively frozen.

Such operations have centralization risks. Users may not be willing to hold such tokens since they
have good reasons to be skeptical about such centralized behaviors.

/Pioneer/contracts/Prince.sol

function transferByManager (address from, address to, uint256 amount)
public
virtual
onlyManager
inwhitelist(from)
inwhitelist(to)
returns (bool)

_transfer(from, to, amount);
return true;

}

/Pioneer/contracts/Prince.sol

function transferFrom(address from, address to, uint256 amount)
public
virtual
override
whenNotPaused()
inwhitelist(from)
inwhitelist(to)
returns (bool)

address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);

return true;

3

/Pioneer/contracts/Prince.sol

function transfer(address to, uint256 amount)
public
virtual
override
whenNotPaused()
inwWhitelist(msg.sender)
inwhitelist(to)
returns (bool)

{
address owner = _msgSender();
_transfer(owner, to, amount);
return true;

}

/Pioneer/contracts/Prince.sol

function burn(address account, uint256 amount) external onlyManager returns (
bool)

{

_burn(account, amount);
return true;

}

Recommendation

It is recommended that the project party should refine the authority and pay attention to the
losses caused by centralization risks to users.

Alleviation

[-02|Optimization Suggestion - Function Visibility Can
Be External

Informational : Optimization Suggestion

0 File Location
/Pioneer/contracts/Prince.sol:195,81,211,180,218,187,/Pioneer/contracts/Whitelistable.
sol:73

Description

Functions that are not called should be declared as external.
/Pioneer/contracts/Prince.sol

* @dev Returns the Uniform Resource Identifier (URI) for “tokenId token.
*/
function documentURI() public view returns(string memory){
return _documentURI;
}

/Pioneer/contracts/Prince.sol

* @dev called by the manager to unpause, returns to normal state
*/
function unpause() public onlyManager{
_paused = false;
emit Unpause();

/Pioneer/contracts/Whitelistable.sol

* @param accounts batch of addresses to whitelist
*/

function addBatchTowhitelist(address[] memory accounts) public onlywWhitelister{
for(uint i = 0; i < accounts.length; i++){
require(accounts[i] != address(0),
"Whitelistable: account is the zero address");

/Pioneer/contracts/Prince.sol

* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool){
return _paused;
}

/Pioneer/contracts/Prince.sol

* @param documentURI_ Uniform Resource Identifier (URI) of Document
*/
function setDocumentURI(string memory documentURI_) public onlyManager{
documentURI = documentURI;
}

/Pioneer/contracts/Prince.sol

* @dev called by the manager to pause, triggers stopped state
*/
function pause() public onlyManager{
_paused = true;
emit Pause();

/Pioneer/contracts/Prince.sol
* @return True if successful
*/
function transferByManager (address from, address to, uint256 amount)

public
virtual

Recommendation

Functions that are not called in the contract should be declared as external.

Alleviation

[-03|Optimization Suggestion - Floating Pragma

0 Informational : Optimization Suggestion
File Location : /Pioneer/contracts/Prince.sol:2,/Pioneer/contracts/Whitelistable.sol:2

Description

Contracts should be deployed with the fixed compiler version that they have been tested
thoroughly or make sure to pin the contract compiler version in the project config. Pinning the
compiler version helps ensure that contracts are not compiled by untested compiler versions.

/Pioneer/contracts/Whitelistable.sol

//SPDX-License-Identifier: MIT
pragma solidity 70.8.18;

import "@openzeppelin/contracts/access/Ownable.sol";

/Pioneer/contracts/Prince.sol

// SPDX-License-Identifier: MIT
pragma solidity 70.8.18;

import "@openzeppelin/contracts/access/Ownable.sol";

Recommendation

Use a fixed compiler version, and consider whether the bugs in the selected compiler version
(https://github.com/ethereum/solidity/releases) will affect the contract.

Alleviation

[-04|Optimization Suggestion - Set the Constant to
Private

0 Informational : Optimization Suggestion
File Location : /Pioneer/contracts/Prince.sol:16

Description

For constants, if the visibility is set to public, the compiler will automatically generate a getter
function for it, which will consume more gas during deployment than private.

/Pioneer/contracts/Prince.sol

//using SafeMath for uint256;
uint256 public constant TOTAL_SUPPLY_MAX = 950000000000;

address public _manager;
bool private _paused;

Recommendation
It is recommended to set the visibility of constants to private instead of public.

Alleviation

[-05|Optimization Suggestion - Use CustomError
Instead of String

Informational : Optimization Suggestion

0 File Location
/Pioneer/contracts/Prince.sol:31,43,172,143,51,/Pioneer/contracts/Whitelistable.sol: 26-
28,38-40,92-94,75-76

Description

When using require or revert, CustomError is more gas efficient than string description, as the
error message described using CustomError is only compiled into four bytes. Especially when string
exceeds 32 bytes, more gas will be consumed. Generally, around 250-270 gas can be saved for
one CustomError replacement when compiler optimization is turned off, 60-80 gas can be saved
even if compiler optimization is turned on.

/Pioneer/contracts/Whitelistable.sol
*/
modifier inWhitelist(address account){
require(
_whitelisted[account],
"inwhitelist: account is not whitelisted"

/Pioneer/contracts/Prince.sol

*/
modifier onlyManager(){
require(msg.sender == _manager,
"JPETHStakingFundSP: caller is not the manager");

—7

}

/Pioneer/contracts/Prince.sol

*/
modifier whenNotPaused(){
require(!_paused, "JPETHStakingFundSP transfer: paused");

—7

}

/Pioneer/contracts/Prince.sol

returns (bool)

{
require(amount + totalSupply() <= TOTAL_SUPPLY_MAX,
"JPETHStakingFundSP: mint amount exceeds total supply");
_mint(to, amount);
addwhitelist(to);

/Pioneer/contracts/Whitelistable.sol

function addBatchTowhitelist(address[] memory accounts) public onlywWhitelister{
for(uint i = 0; i < accounts.length; i++){
require(accounts[i] != address(0),
"Whitelistable: account is the zero address");
require(!_whitelisted[accounts[i]],
"Whitelistable: account is already whitelisted");
_whitelisted[accounts[i]] = true;

/Pioneer/contracts/Prince.sol

Whitelistable(manager)

{
require(manager != address(0),
"JPETHStakingFundSP: manager is the zero address");
_manager = manager;
_decimals = tokenDecimals;

/Pioneer/contracts/Whitelistable.sol

function updatewhitelister(address newWhitelister) public onlyOwner{
require(
newwWwhitelister != address(0),
"Whitelistable: new whitelister is the zero address"

/Pioneer/contracts/Prince.sol

*/
function updateManager(address newManager) external onlyOwner{
require(newManager !'= address(0),
"JPETHStakingFundSP: new manager is the zero address");
_manager = newManager;
emit ManagerChanged(_manager);

/Pioneer/contracts/Whitelistable.sol
*/
modifier onlywWhitelister(){
require(

msg.sender == _whitelister,
"Whitelistable: caller is not the whitelister"

Recommendation

When reverting, it is recommended to use CustomError instead of ordinary strings to describe the
error message.

Alleviation

[-06|Optimization Suggestion - Recommend to Follow
Code Layout Conventions

0 Informational : Optimization Suggestion
File Location : /Pioneer/contracts/Prince.sol:13,/Pioneer/contracts/Whitelistable.sol:10

Description

In the solidity document(https://docs.soliditylang.org/en/v0.8.17/style-guide.html), there are the
following conventions for code layout:

Layout contract elements in the following order: 1. Pragma statements, 2. Import statements, 3.
Interfaces, 4. Libraries, 5. Contracts.

Inside each contract, library or interface, use the following order: 1. Type declarations, 2. State
variables, 3. Events, 4. Modifiers, 5. Functions.

Functions should be grouped according to their visibility and ordered: 1. constructor, 2. receive
function (if exists), 3. fallback function (if exists), 4. external, 5. public, 6. internal, 7. private.

/Pioneer/contracts/Whitelistable.sol
* @dev Allows accounts to be Whitelisted by a "Whitelister" role
*/
contract Whitelistable is Ownable{

address public _whitelister;
mapping(address => bool) internal _whitelisted;

/Pioneer/contracts/Prince.sol
* @dev ERC20 Token for JpEthStakingFundSp
*/
contract Prince is Ownable, ERC20, Whitelistable{
//using SafeMath for uint256;

Recommendation

It is recommended to follow the above code layout conventions to improve code readability.

Alleviation

[-07|Optimization Suggestion - No Check of Address
Params with Zero Address

Informational : Optimization Suggestion

File Location :
/Pioneer/contracts/Prince.sol:27,/Pioneer/contracts/Whitelistable.sol: 64,86

Description

The input parameter of the address type in the function does not use the zero address for
verification.

/Pioneer/contracts/Prince.sol

event Unpause();

constructor (
string memory name, string memory symbol, address manager, address owner, uint8

tokenDecimals

)
ERC20(name, symbol)

Whitelistable(manager)

/Pioneer/contracts/Whitelistable.sol

* @param account The address to remove from the whitelist
*/
function unWhitelist(address account) external onlyWhitelister{
_whitelisted[account] = false;
emit Unwhitelisted(account);

/Pioneer/contracts/Whitelistable.sol

* @param account The address to whitelist
*/
function addwhitelist(address account) public onlyWhitelister{
_whitelisted[account] = true;
emit Whitelisted(account);

Recommendation

It is recommended to perform zero address verification on the input parameters of the address
type.

Alleviation

[-08|Optimization Suggestion - Use Assembly to
Check Zero Address

Informational : Optimization Suggestion

File Location :
/Pioneer/contracts/Prince.sol:31,172,/Pioneer/contracts/Whitelistable.sol:75,93

Description

Using assembly to check zero address can save about 18 gas in each call.
/Pioneer/contracts/Whitelistable.sol

function updatewWhitelister(address newWhitelister) public onlyOwner{
require(
newwWhitelister != address(0),
"Whitelistable: new whitelister is the zero address"

)

/Pioneer/contracts/Whitelistable.sol

function addBatchToWhitelist(address[] memory accounts) public onlyWhitelister{
for(uint i = 0; i < accounts.length; i++){
require(accounts[i] != address(0),
"Whitelistable: account is the zero address");
require(!_whitelisted[accounts[i]],
"Whitelistable: account is already whitelisted");
_whitelisted[accounts[i]] = true;

/Pioneer/contracts/Prince.sol

Whitelistable(manager)

{
require(manager != address(0),
"JPETHStakingFundSP: manager is the zero address");
_manager = manager;
_decimals = tokenDecimals;

/Pioneer/contracts/Prince.sol

*/
function updateManager(address newManager) external onlyOwner{
require(newManager != address(0),
"JPETHStakingFundSP: new manager is the zero address");
_manager = newManager;
emit ManagerChanged(_manager);

Recommendation

It is recommended to use assembly to check zero address.

Alleviation

[-09|Optimization Suggestion - Use ++i/--i Instead of
i++/i--

0 Informational : Optimization Suggestion
File Location : /Pioneer/contracts/Whitelistable.sol:74

Description

Compared with i++, +4i can save about 5 gas per use.Compared with i--, --i can save about 3 gas
per use in for loop.

/Pioneer/contracts/Whitelistable.sol
*/

function addBatchToWhitelist(address[] memory accounts) public onlyWhitelister{
for(uint i = 0; i < accounts.length; i++){
require(accounts[i] != address(0),
"Whitelistable: account is the zero address");
require(!_whitelisted[accounts[i]],
"Whitelistable: account is already whitelisted");

Recommendation

It is recommended to use ++i/--i instead of i++/i-- in for loop.

Alleviation

I-10|Optimization Suggestion - Parameters Should Be
Declared as Calldata

0 Informational : Optimization Suggestion
File Location : /Pioneer/contracts/Prince.sol:211,/Pioneer/contracts/Whitelistable.sol:73

Description

When the compiler parses the external or public function, it can directly read the function
parameters from calldata. Setting it to other storage locations may waste gas. About 300-400 gas
can be saved with compiler optimization turned off while 120-150 gas can be saved vice versa.

/Pioneer/contracts/Whitelistable.sol

* @param accounts batch of addresses to whitelist
*/
function addBatchToWhitelist(address[] memory accounts) public onlyWhitelister{
for(uint i = 0; i < accounts.length; i++){

require(accounts[i] != address(0),
"Whitelistable: account is the zero address");

/Pioneer/contracts/Prince.sol
* @param documentURI_ Uniform Resource Identifier (URI) of Document
*/

function setDocumentURI(string memory documentURI_) public onlyManager{
documentURI = documentURI;

}

Recommendation

In external or public functions, the storage location of function parameters should be set to calldata
to save gas.

Alleviation

[-11|Optimization Suggestion - Variables Can Be
Declared as Immutable

0 Informational : Optimization Suggestion
File Location : /Pioneer/contracts/Prince.sol:19

Description

The solidity compiler of version 0.6.5 introduces immutable to modify state variables that are only
modified in the constructor. Using immutable can save gas.

/Pioneer/contracts/Prince.sol

address public _manager;
bool private _paused;

uint8 private _decimals;
string private _documentURI;

Recommendation

For contracts compiled with compiler of versions 0.6.5 and above, if the state variable is only
modified in the constructor, it is recommended to modify the variable with immutable to save gas.

Alleviation

[-12|Optimization Suggestion - Functions with the
Same Functionality Should Be Implemented
Consistently

0 Informational : Optimization Suggestion
File Location : /Pioneer/contracts/Whitelistable.sol:64-67,75-76

Description

The functions addWhitelist and addBatchToWhitelist both add addresses to the whitelist. The
difference between them is that addWhitelist adds a single address whereas addBatchToWhitelist
adds a batch of addresses. In the addBatchToWhitelist function, each address being added is
checked for being a zero address or already present in the whitelist before being added. However,
addWhitelist function does not have such checks. The two implementations are inconsistent.
Moreover, when adding an address to the whitelist, necessary zero-address validation should be
conducted. However, if the address already exists in the whitelist, there is no need to revert the
transaction.

/Pioneer/contracts/Whitelistable.sol

/**
* @dev Adds accounts to whitelist
* @param accounts batch of addresses to whitelist
*/

function addBatchToWhitelist(address[] memory accounts) public onlyWhitelister{
for(uint i = 0; i < accounts.length; i++){
require(accounts[i] != address(0),
"Whitelistable: account is the zero address");
require(!_whitelisted[accounts[i]],
"Whitelistable: account is already whitelisted");
_whitelisted[accounts[i]] = true;
emit Whitelisted(accounts[i]);

}

/Pioneer/contracts/Whitelistable.sol

/**
* @dev Adds account to whitelist
* @param account The address to whitelist
*/
function addwWhitelist(address account) public onlyWhitelister{
_whitelisted[account] = true;
emit Whitelisted(account);

3

Recommendation

It is recommended to implement the "adding addresses to the whitelist" functionality within a
separate internal function, which can be called by both addWhitelist and addBatchToWhitelist
functions. This approach ensures consistency in the implementation and avoids code redundancy.

Alleviation

[-13|Optimization Suggestion - Redundant Function
getManager

0 Informational : Optimization Suggestion
File Location : /Pioneer/contracts/Prince.sol:163-165,17

Description

The visibility of the state variable _manager is public, which means that _manager has a default
getter function to get its value, and there is no need for an additional getManager function to get
the value of this variable. Redundant function will consume extra gas.

/Pioneer/contracts/Prince.sol
/**
* @dev getManager address
*/
function getManager() external view returns (address){
return _manager;
}

/Pioneer/contracts/Prince.sol

address public _manager;

Recommendation

It is recommended to remove the function getManager or change the visibility of the state variable
_manager to private.

Alleviation

[-14|Optimization Suggestion - Inaccurate Code
Comments and Error Messages

0 Informational : Optimization Suggestion
File Location : /Pioneer/contracts/Prince.sol:143,31,43,48,51,172,11

Description

In the Prince.sol smart contract, the name 'JPETHStakingFundSP', which refers to another contract
JpEthStakingFundSp.sol, appears multiple times within both the code comments and error
messages. However, no inheritance or other connections between these two contracts were found.
This discrepancy could potentially cause confusion.

/Pioneer/contracts/Prince.sol

/**
* @dev Throws if JPETHStakingFundSP transfer: paused
*/
modifier whenNotPaused(){
require(!_paused, "JPETHStakingFundSP transfer: paused");

—7

}

/Pioneer/contracts/Prince.sol

function updateManager(address newManager) external onlyOwner{
require(newManager != address(0),
"JPETHStakingFundSP: new manager is the zero address");
_manager = newManager;
emit ManagerChanged(_manager);

}
/Pioneer/contracts/Prince.sol

modifier onlyManager(){
require(msg.sender == _manager,
"JPETHStakingFundSP: caller is not the manager");

—r
}
/Pioneer/contracts/Prince.sol
/**
* @title Prince Token

* @dev ERC20 Token for JpEthStakingFundSp
*/

/Pioneer/contracts/Prince.sol

constructor(
string memory name, string memory symbol, address manager, address owner, uint8
tokenDecimals
)
ERC20(name, symbol)
Whitelistable(manager)

{
require(manager != address(0),
"JPETHStakingFundSP: manager is the zero address");
_manager = manager;
_decimals = tokenDecimals;
_paused = true;
_transferOwnership(owner);

}

/Pioneer/contracts/Prince.sol

function mint(address to, uint256 amount)
external
onlyManager
returns (bool)

{
require(amount + totalSupply() <= TOTAL_SUPPLY_MAX,
"JPETHStakingFundSP: mint amount exceeds total supply");
_mint(to, amount);
addwhitelist(to);
return true;

}

Recommendation

It is recommended that the project party thoroughly inspect these code comments and error
messages to determine whether they have been introduced as a result of an erroneous code fork.

Alleviation

4. Disclaimer

No description, statement, recommendation or conclusion in this report shall be construed as
endorsement, affirmation or confirmation of the project. The security assessment is limited to the
scope of work as stipulated in the Statement of Work.

This report is prepared in response to source code, and based on the attacks and vulnerabilities in
the source code that already existed or occurred before the date of this report, excluding any new
attacks or vulnerabilities that exist or occur after the date of this report. The security assessment
are solely based on the documents and materials provided by the customer, and the customer
represents and warrants documents and materials are true, accurate and complete.

CONSULTANT DOES NOT MAKE AND HEREBY DISCLAIMS ANY REPRESENTATIONS OR WARRANTIES
OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, REGARDING THE
SERVICES, DELIVERABLES, OR ANY OTHER MATTER PERTAINING TO THIS REPORT.

CONSULTANT SHALL NOT BE RESPONSIBLE FOR AND HEREBY DISCLAIMS MERCHANTABILITY,
FITNESS FOR PURPOSE, TITLE, NON-INFRINGEMENT OR NON-APPROPRIATION OF INTELLECTUAL
PROPERTY RIGHTS OF A THIRD PARTY, SATISFACTORY QUALITY, ACCURACY, QUALITY,
COMPLETENESS, TIMELINESS, RESPONSIVENESS, OR PRODUCTIVITY OF THE SERVICES OR
DELIVERABLES.

CONSULTANT EXCLUDES ANY WARRANTY THAT THE SERVICES AND DELIVERABLES WILL BE
UNINTERRUPTED, ERROR FREE, FREE OF SECURITY DEFECTS OR HARMFUL COMPONENTS, REVEAL
ALL SECURITY VULNERABILITIES, OR THAT ANY DATA WILL NOT BE LOST OR CORRUPTED.

CONSULTANT SHALL NOT BE RESPONSIBLE FOR (A) ANY REPRESENTATIONS MADE BY ANY
PERSON REGARDING THE SUFFICIENCY OR SUITABILITY OF SERVICES AND DELIVERABLES IN
ANY ACTUAL APPLICATION, OR (B) WHETHER ANY SUCH USE WOULD VIOLATE OR INFRINGE THE
APPLICABLE LAWS, OR (C) REVIEWING THE CUSTOMER MATERIALS FOR ACCURACY.

5. Appendix

5.1 Visibility

Contract

Whitelistable

Whitelistable

Whitelistable

Whitelistable

Whitelistable

Whitelistable

Whitelistable

Prince

Prince

Prince

Prince

Prince

Prince

Prince

Prince

Prince

FuncName

CTOR

getWhitelister

isWhitelisted

addWhitelist

addBatchToWhitelist

unWhitelist

updateWhitelister

CTOR

transfer

transferByManager

transferFrom

mint

burn

getManager

updateManager

paused

Visibility

public

external

external

public

public

external

public

public

public

public

public

external

external

external

external

public

Mutability

Modifiers

onlyWhitelister

onlyWhitelister

onlyWhitelister

onlyOwner

ERC20,Whitelistable

whenNotPaused,inWhitelist,inWhitelist

onlyManager,inWhitelist,inWhitelist

whenNotPaused,inWhitelist,inWhitelist

onlyManager

onlyManager

onlyOwner

Contract

Prince

Prince

Prince

Prince

Prince

FuncName

pause

unpause

decimals

setDocumentURI

documentURI

Visibility

public

public

public

public

public

Mutability

Modifiers

onlyManager

onlyManager

onlyManager

5. Appendix

5.2 Call Graph

Prince

Legend

Internal Call ——————»

External Call ———————»
External Function
Public Function
Internal Function
Modifier

Prince

Whitelistable

@
@
o
N
o>
-
D
o
-
>
>

Ownable(abstract)

e
L
==
g
<=
==
i
<EIEe
<

5. Appendix

5.3 Inheritance Graph

Prince

Prince
State Variables:
TOTAL_SUPPLY_MAX
_manager
_paused
_decimals
_documentURI
Modifiers:
onlyManager()
whenNotPaused()
External Functions:
mint(address,uint256)
burn(address,uint256)
getManager()
updateManager(address)
Public Functions:
constructor()
transfer(address,uint256)

transferByManager(address,address,uint256)

transferFrom(address,address,uint256)
paused()

pause()

unpause()

decimals()

setDocumentURI(string)

documentURI()

Ownable
State Variables:
_owner
Modifiers:
onlyOwner()
Public Functions:
constructor()
owner()
renounceOwnership()
transferOwnership(address)
Internal Functions:
_checkOwner()
_transferOwnership(address)

ERC20
State Variables:
_balances
_allowances
_totalSupply
_name
_symbol
Public Functions:
constructor()
name()
symbol()
decimals()
totalSupply()
balanceOf(address)
transfer(address,uint256)
allowance(address,address)
approve(address,uint256)
transferFrom(address,address,uint256)
increaseAllowance(address,uint256)
decreaseAllowance(address,uint256)
Internal Functions:
_transfer(address,address,uint256)
_mint(address,uint256)
_burn(address,uint256)
_approve(address,address,uint256)
_spendAllowance(address,address,uint256)

_beforeTokenTransfer(address,address,uint256)
_afterTokenTransfer(address,address,uint256)

Whitelistable

State Variables:

_whitelister
_whitelisted

Modifiers:
onlyWhitelister()
inWhitelist()

External Functions:
getWhitelister()
isWhitelisted(address)
unWhitelist(address)

Public Functions:
constructor()
addWhitelist(address)
addBatchToWhitelist(address[])
updateWhitelister(address)

)

Context
Internal Functions:
_msgSender()

_msgData()

IERC20

External Functions:
totalSupply()
balanceOf(address)
transfer(address,uint256)
allowance(address,address)
approve(address,uint256)
transferFrom(address,address,uint256)

IERC20Metadata
External Functions:
name()
symbol()
decimals()

