Aug.17, 2023 &) ANTCHAIN | X0z Z AN

Security Assessment
TokenVesting

Express Service




Table of Contents

1. Overview
1.1. Executive Summary
1.2. Project Summary
1.3. Assessment Summary
1.4. Assessment Scope
2. Checklist
3. Findings
3.1. H-01|Code Security - Freeze Money
3.2. I-02|Optimization Suggestion - Function Visibility Can Be External
3.3. I-03|Optimization Suggestion - Floating Pragma
3.4. I-04|Optimization Suggestion - Use CustomError Instead of String

3.5. I-05|Optimization Suggestion - No Check of Address Params with Zero
Address

3.6. I-06|Optimization Suggestion - Use Assembly to Check Zero Address

3.7. I-07|Optimization Suggestion - Use != 0 Instead of > 0 for Unsigned
Integer Comparison

3.8. I-08|Optimization Suggestion - Lack of Error Message
3.9. I-09|Optimization Suggestion - Redundant Check of _totalAmount

3.10. I-10|Optimization Suggestion - Recommend to Use a Multi-signature
Wallet as Owner

3.11. I-11|Optimization Suggestion - Redundant Computation When
Function revoke Calls release

4. Disclaimer

5. Appendix



1. Overview

1.1. Executive Summary

TokenVesting is an ERC20 token vesting project. This report has been prepared for TokenVesting
project to discover issues and vulnerabilities in the source code as well as contract dependencies
that were not part of an officially recognized library. Conducted by Static Analysis and Formal
Verificaton, we have identified 1 high vulnerability and 10 informational issues in TokenVesting.sol
(dea0d81e28437d04fe3a63d244b884f8). The TokenVesting team has resolved the H-01 and I-03
issues in TokenVesting.sol (b9a6ad121c8a99a7aff865f4de43246e). Regarding the other
informational issues, the team has chosen to retain the current implementation without
modifications.

1.2. Project Summary

Project Name TokenVesting
Platform Ethereum
Language Solidity

Code Repository

Commit

1.3. Assessment Summary

Delivery Date Aug.17, 2023

Audit Methodology Static Analysis, Formal Verification

1.4. Assessment Scope

ID File File Hash

1 /clof_vesting/TokenVesting.sol dea0d81e28437d04fe3a63d244b884f8



2. Checklist

2.1. Code Security

Reentrancy DelegateCall
Input Validation

Arbitrary External Call
Right-To-Left-Override Character
TxOrigin

ThisBalance

Uninitialized Variable

Affected by Compiler Bug

2.2. Optimization Suggestion

Compiler Version

Function Visibility

Externally Controlled Variables

Constant Specific

Return Value Unspecified

State Variable Defined Without Storage Location
Compare With Timestamp/Block Number/Blockhash
Delete Struct Containing the Mapping Type
Paths in the Modifier Not End with "_" or Revert
Lack of SafeMath

Tautology Issue

Redundant/Duplicated/Dead Code

Undeclared Resource

Unused Resource

2.3. Business Security

Unchecked this.call

Unchecked Owner Transfer
Unauthenticated Storage Access
Missing Checks for Return Values
VarType Deduction

Shadow Variable

Integer Overflow

Frozen Money

Do-while Continue

Risk For Weak Randomness
Diamond Inheritance

Array Length Manipulation
Divide Before Multiply

Improper State Variable Modification
Deprecated Function

Code Style

Event Specific

Inexistent Error Message

Import Issue

Constructor in Base Contract Not Implemented
Usage of '=+'

Non-payable Public Functions Use msg.value
Compiler Error/Warning

Loop Depends on Array Length

Code Complexity/Code Inefficiency

Optimizable Return Statement

The Code Implementation is Consistent With Comments, Project White Papers and Other Materials

Permission Check

Address Check



3. Findings

10 Informational

High

Informational

ID

H-01

1-02

1-03

1-04

CustomError Instead of
String

n. Code Security
Total: 1, High: 1
]
0 Optimization Suggestion
Total
1 1 Total: 10, Informational: 10
Business Security
Total: 0, no vulnerabilities.
B Resolved Acknowledged
0 2.5 5 7.5 10
Title Category Severity Status
Slode Security - Freeze Code Security ® High Resolved
oney
Optimization
\S/:Js?t?ﬁfsl%gr; ELénCtlon Optimization Suggestion Informational Acknowledged
External
Optimization
Suggestion - Floating Optimization Suggestion Informational Resolved
Pragma
Optimization
suggestion - Use Optimization Suggestion Informational Acknowledged



ID

I-05

1-06

1-07

1-08

1-09

I-10

I-11

Title

Optimization
Suggestion - No Check
of Address Params with
Zero Address
Optimization
Suggestion - Use
Assembly to Check
Zero Address
Optimization
Suggestion - Use I= 0
Instead of > 0O for
Unsigned Integer
Comparison

Optimization
Suggestion - Lack of
Error Message

Optimization
Suggestion -
Redundant Check of
_totalAmount
Optimization
Suggestion -
Recommend to Use a
Multi-signature Wallet
as Owner
Optimization
Suggestion -
Redundant
Computation When
Function revoke Calls
release

Category

Optimization Suggestion

Optimization Suggestion

Optimization Suggestion

Optimization Suggestion

Optimization Suggestion

Optimization Suggestion

Optimization Suggestion

Severity

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Status

Acknowledged

Acknowledged

Acknowledged

Acknowledged

Acknowledged

Acknowledged

Acknowledged



H-01|Code Security - Freeze Money

n High : Code Security
File Location : /clof_vesting/TokenVesting.sol:73,79

Description

There is at least one payable function in the contract, but no transfer function(like send, transfer,
call...) exists, which will cause Ether to be locked in the contract.

/clof_vesting/TokenVesting.sol

/**
* @dev Fallback function is executed if none of the other functions match the
function
* identifier or no data was provided with the function call.

*/
fallback() external payable{}

/clof_vesting/TokenVesting.sol

/**
* @dev This function is called for plain Ether transfers, i.e. for every call
with empty calldata.
*/

receive() external payable{}

Recommendation

If the contract is about to receive ether, an ether transfer function should be provided. Otherwise,
we suggest to remove payable functions.

Alleviation

Resolved in TokenVesting.sol (b9a6ad121c8a99a7aff865f4de43246¢€). An "emergency" function is
added to withdraw tokens or native coins. Meanwhile vesting token is not withdrawable in
"emergency" function, in purpose of protecting the interest of beneficiary.



[-02|Optimization Suggestion - Function Visibility Can
Be External

0 Informational : Optimization Suggestion
File Location : /clof_vesting/TokenVesting.sol:244,281,258,265,329,230,220

Description

Functions that are not called should be declared as external.
/clof_vesting/TokenVesting.so

* @return the number of vesting schedules
*/
function getVestingSchedulesCountByBeneficiary(
address _beneficiary
) public view returns (uint256) {

/clof_vesting/TokenVesting.so

* @return the vesting id
*/
function getVestingIdAtIndex(
uint256 index
) public view returns (bytes32) {

/clof_vesting/TokenVesting.so

* @return the vested amount
*/
function computeReleasableAmount (
bytes32 vestingScheduleld
)

/clof_vesting/TokenVesting.so

* @return the vesting schedule structure information
*/
function getVestingScheduleByAddressAndIndex(
address holder,
uint256 index

/clof_vesting/TokenVesting.so

* @dev Returns the last vesting schedule for a given holder address.
*/
function getlLastVestingScheduleForHolder (
address holder
) public view returns (VestingSchedule memory) {

/clof_vesting/TokenVesting.so



* @return the total amount of vesting schedules
*/
function getVestingSchedulesTotalAmount() public view returns (uint256){
return vestingSchedulesTotalAmount;

}

/clof_vesting/TokenVesting.so

* @dev Returns the address of the ERC20 token managed by the vesting

contract.
*/
function getToken() public view returns (address){
return address(_token);

}

Recommendation

Functions that are not called in the contract should be declared as external.

Alleviation

Acknowledged. TokenVesting team decided to keep no change.



[-03|Optimization Suggestion - Floating Pragma

0 Informational : Optimization Suggestion

File Location : /clof_vesting/TokenVesting.sol:3

Description

Contracts should be deployed with fixed compiler version which has been tested thoroughly or
make sure to lock the contract compiler version in the project configuration. Locked compiler
version ensures that contracts will not be compiled by untested compiler version.

/clof_vesting/TokenVesting.sol

// contracts/TokenVesting.sol
// SPDX-License-Identifier: Apache-2.0
pragma solidity 70.8.19;

// OpenZeppelin dependencies

Recommendation

Use a fixed compiler version, and consider whether the bugs in the selected compiler version
(https://github.com/ethereum/solidity/releases) will affect the contract.

Alleviation
Resolved in TokenVesting.sol (b9a6ad121c8a99a7aff865f4de43246¢).



[-04|Optimization Suggestion - Use CustomError
Instead of String

0 Informational : Optimization Suggestion

File Location : /clof_vesting/TokenVesting.sol:106,54-55,117,199,233,111-
113,155,174,204,65,102

Description

When using require or revert, CustomError is more gas efficient than string description, as the
error message described using CustomError is only compiled into four bytes. Especially when string
exceeds 32 bytes, more gas will be consumed. Generally, around 250-270 gas can be saved for
one CustomError replacement when compiler optimization is turned off, 60-80 gas can be saved
even if compiler optimization is turned on.

/clof_vesting/TokenVesting.so

modifier onlyIfVestingScheduleNotRevoked(bytes32 vestingScheduleId){
require(vestingSchedules[vestingScheduleId].initialized);
require(!vestingSchedules[vestingScheduleId].revoked);

—17

}

/clof_vesting/TokenVesting.so

*/
function withdraw(uint256 amount) external nonReentrant onlyOwner{
require(
getWithdrawableAmount() >= amount,
"TokenVesting: not enough withdrawable funds"

/clof_vesting/TokenVesting.so

bool isReleasor = (msg.sender == owner());
require(
isBeneficiary || isReleasor,

"TokenVesting: only beneficiary and owner can release vested tokens"

/clof_vesting/TokenVesting.so

)
uint256 vestedAmount = _computeReleasableAmount(vestingSchedule);
require(

vestedAmount >= amount,

"TokenVesting: cannot release tokens, not enough vested tokens"

/clof_vesting/TokenVesting.so

uint256 index
) public view returns (bytes32) {
require(



index < getVestingSchedulesCount(),
"TokenVesting: index out of bounds"

/clof_vesting/TokenVesting.so

constructor(address token_){
// Check that the token address is not 0x0.
require(token_ != address(0x0));
// Set the token address.
_token = ERC20(token_);

/clof_vesting/TokenVesting.so

require(_duration > 0, "TokenVesting: duration must be > 0");
require(_totalAmount > 0, "TokenVesting: amount must be > 0");
require(

_slicePeriodSeconds >= 1,

"TokenVesting: slicePeriodSeconds must be >= 1"

/clof_vesting/TokenVesting.so

uint256 _totalAmount
) external onlyOwner {
require(
getWithdrawableAmount() >= _totalAmount + _tgeAmount,

"TokenVesting: cannot create vesting schedule because not sufficient tokens"

/clof_vesting/TokenVesting.so

vestingScheduleId

17

require(
vestingSchedule.revocable,
"TokenVesting: vesting is not revocable"

/clof_vesting/TokenVesting.so

"TokenVesting: cannot create vesting schedule because not sufficient tokens"
)i
require(
_totalAmount > _tgeAmount,
"TokenVesting: _tgeAmount must lesser than _totalAmount"

/clof_vesting/TokenVesting.so
"TokenVesting: slicePeriodSeconds must be >= 1"
Zéquire(_duration >= _cliff, "TokenVesting: duration must be >= cliff"
)i bytes32 vestingScheduleId = computeNextVestingScheduleIdForHolder (
_beneficiary

Recommendation
Use CustomError instead of string for require or revert description.

Alleviation

Acknowledged. TokenVesting team decided to keep no change.



[-05|Optimization Suggestion - No Check of Address
Params with Zero Address

0 Informational : Optimization Suggestion
File Location : /clof_vesting/TokenVesting.sol:93

Description

The input parameter of the address type in the function does not use the zero address for
verification.
/clof_vesting/TokenVesting.so

* @param _totalAmount total amount of tokens to be released at the end of

the vesting
*/
function createVestingSchedule(
address _beneficiary,
uint256 _start,

Recommendation

It is recommended to perform zero address verification on the input parameters of the address
type.

Alleviation

Acknowledged. TokenVesting team decided to keep no change.



[-06|Optimization Suggestion - Use Assembly to
Check Zero Address

0 Informational : Optimization Suggestion
File Location : /clof_vesting/TokenVesting.sol:65

Description

Using assembly to check zero address can save gas. Under Solidity compiler 0.8.x, about 18 gas
can be saved in each call.

/clof_vesting/TokenVesting.sol
constructor(address token_){
// Check that the token address is not 0x0.
require(token_ != address(0x0));
// Set the token address.
_token = ERC20(token_);
Recommendation

It is recommended to use assembly to check zero address.

Alleviation

Acknowledged. TokenVesting team decided to keep no change.



[-07|Optimization Suggestion - Use != 0 Instead of >
0 for Unsigned Integer Comparison

0 Informational : Optimization Suggestion
File Location : /clof_vesting/TokenVesting.sol:111-112

Description

For unsigned integers, use =0 for comparison, which consumes less gas than >0. Under Solidity
compiler 0.8.x, when compiler optimization is turned off, about 3 gas can be saved. When compiler
optimization is turned on, no gas can be saved.

/clof_vesting/TokenVesting.sol

require(_duration > 0, "TokenVesting: duration must be > 0");
require(_totalAmount > 0, "TokenVesting: amount must be > 0");
require(

_slicePeriodSeconds >= 1,

Recommendation
For unsigned integers, it is recommended to use !=0 instead of >0 for comparison.

Alleviation

Acknowledged. TokenVesting team decided to keep no change.



[-08|Optimization Suggestion - Lack of Error Message

0 Informational : Optimization Suggestion
File Location : /clof_vesting/TokenVesting.sol:54-55,65

Description

Use empty string as parameter when invoking function Revert() or Require().
/clof_vesting/TokenVesting.sol
constructor(address token_){
// Check that the token address is not 0x0.
require(token_ != address(0x0));

// Set the token address.
_token = ERC20(token_);

}
/clof_vesting/TokenVesting.sol
*/
modifier onlyIfVestingScheduleNotRevoked(bytes32 vestingScheduleId){

require(vestingSchedules[vestingScheduleId].initialized);
require(!vestingSchedules[vestingScheduleId].revoked);

—

Recommendation

It is recommended to provide detailed error messages in the parameters when calling require or
revert functions. Alternatively, CustomError can be used to describe error messages.

Alleviation

Acknowledged. TokenVesting team decided to keep no change.



[-09|Optimization Suggestion - Redundant Check of
_totalAmount

0 Informational : Optimization Suggestion
File Location : /clof_vesting/TokenVesting.sol:112

Description

The variables _tgeAmount and _totalAmount are both of type uint. If the condition in lines 106-109
is satisfied, then it is guaranteed that _totalAmount is greater than 0. Therefore, the condition in
line 112 becomes redundant and can be removed to optimize for gas efficiency.

/clof_vesting/TokenVesting.sol

require(
_totalAmount > _tgeAmount,
"TokenVesting: _tgeAmount must lesser than _totalAmount"

);

require(_duration > 0, "TokenVesting: duration must be > 0");
require(_totalAmount > 0, "TokenVesting: amount must be > 0");

Recommendation
It is recommended to remove the verification of _totalAmount in line 112.

Alleviation

Acknowledged. TokenVesting team decided to keep no change.



I-10|Optimization Suggestion - Recommend to Use a
Multi-signature Wallet as Owner

0 Informational : Optimization Suggestion
File Location : /clof_vesting/TokenVesting.sol:173

Description

The TokenVesting contract will hold a significant amount of tokens, while the contract owner has
the permission to withdraw withdrawable tokens. The TokenVesting contract might be vulnerable to
theft if the owner's private key get compromised.

/clof_vesting/TokenVesting.sol
function withdraw(uint256 amount) external nonReentrant onlyOwner{
require(

getwWithdrawableAmount() >= amount,
"TokenVesting: not enough withdrawable funds"

)

/*
* @dev Replaced owner() with msg.sender => address of WITHDRAWER_ROLE
*/

SafeERC20.safeTransfer(_token, msg.sender, amount);
}

Recommendation

The project team is recommended to carefully protect the private key of the contract owner. It is
also a good practice to use a multi-signature wallet as the owner of the contract.

Alleviation

Acknowledged. TokenVesting team decided to keep no change.



I-11|Optimization Suggestion - Redundant

Computation When Function revoke Calls release

Informational : Optimization Suggestion
File Location : /clof_vesting/TokenVesting.sol:159,203

Description

Redundant computation occurs when the function revoke calls the function release, as
vestedAmount is calculated twice in each of these functions. This results in unnecessary gas
consumption.

/clof_vesting/TokenVesting.so

function revoke(

bytes32 vestingScheduleId

) external onlyOwner onlyIfVestingScheduleNotRevoked(vestingScheduleId) {

}

VestingSchedule storage vestingSchedule = vestingSchedules|
vestingSchedulelId
17

require(
vestingSchedule.revocable,
"TokenVesting: vesting is not revocable"
);
uint256 vestedAmount = _computeReleasableAmount(vestingSchedule);
if (vestedAmount > 0) {
release(vestingScheduleId, vestedAmount);

uint256 unreleased = vestingSchedule.amountTotal -
vestingSchedule.released;

vestingSchedulesTotalAmount = vestingSchedulesTotalAmount - unreleased;

vestingSchedule.revoked = true;

/clof_vesting/TokenVesting.so

function release(

bytes32 vestingScheduleld,
uint256 amount

) public nonReentrant onlyIfVestingScheduleNotRevoked(vestingScheduleId) {

VestingSchedule storage vestingSchedule = vestingSchedules][

vestingScheduleId
1;
bool isBeneficiary = msg.sender == vestingSchedule.beneficiary;
bool isReleasor = (msg.sender == owner());
require(
isBeneficiary || isReleasor,

"TokenVesting: only beneficiary and owner can release vested tokens"
)

uint256 vestedAmount = _computeReleasableAmount(vestingSchedule);

Recommendation



It is recommended to create an _release function with internal visibility, which is solely responsible
for releasing tokens. Both the revoke and release functions should call the _release function to

release tokens.

Alleviation

Acknowledged. TokenVesting team decided to keep no change.



4. Disclaimer

No description, statement, recommendation or conclusion in this report shall be construed as
endorsement, affirmation or confirmation of the project. The security assessment is limited to the
scope of work as stipulated in the Statement of Work.

This report is prepared in response to source code, and based on the attacks and vulnerabilities in
the source code that already existed or occurred before the date of this report, excluding any new
attacks or vulnerabilities that exist or occur after the date of this report. The security assessment
are solely based on the documents and materials provided by the customer, and the customer
represents and warrants documents and materials are true, accurate and complete.

CONSULTANT DOES NOT MAKE AND HEREBY DISCLAIMS ANY REPRESENTATIONS OR WARRANTIES
OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, REGARDING THE
SERVICES, DELIVERABLES, OR ANY OTHER MATTER PERTAINING TO THIS REPORT.

CONSULTANT SHALL NOT BE RESPONSIBLE FOR AND HEREBY DISCLAIMS MERCHANTABILITY,
FITNESS FOR PURPOSE, TITLE, NON-INFRINGEMENT OR NON-APPROPRIATION OF INTELLECTUAL
PROPERTY RIGHTS OF A THIRD PARTY, SATISFACTORY QUALITY, ACCURACY, QUALITY,
COMPLETENESS, TIMELINESS, RESPONSIVENESS, OR PRODUCTIVITY OF THE SERVICES OR
DELIVERABLES.

CONSULTANT EXCLUDES ANY WARRANTY THAT THE SERVICES AND DELIVERABLES WILL BE
UNINTERRUPTED, ERROR FREE, FREE OF SECURITY DEFECTS OR HARMFUL COMPONENTS, REVEAL
ALL SECURITY VULNERABILITIES, OR THAT ANY DATA WILL NOT BE LOST OR CORRUPTED.

CONSULTANT SHALL NOT BE RESPONSIBLE FOR (A) ANY REPRESENTATIONS MADE BY ANY
PERSON REGARDING THE SUFFICIENCY OR SUITABILITY OF SERVICES AND DELIVERABLES IN
ANY ACTUAL APPLICATION, OR (B) WHETHER ANY SUCH USE WOULD VIOLATE OR INFRINGE THE
APPLICABLE LAWS, OR (C) REVIEWING THE CUSTOMER MATERIALS FOR ACCURACY.



5. Appendix

5.1 Visibility

Contract

TokenVesting

TokenVesting

TokenVesting

TokenVesting

TokenVesting

TokenVesting

TokenVesting

TokenVesting

TokenVesting

TokenVesting

TokenVesting

TokenVesting

TokenVesting

TokenVesting

TokenVesting

TokenVesting

FuncName

_CTOR_

receive

fallback

createVestingSchedule

revoke

withdraw

release

getVestingSchedulesCountByBeneficiary

getVestingIdAtIndex

getVestingScheduleByAddressAndIndex

getVestingSchedulesTotalAmount

getToken

getVestingSchedulesCount

computeReleasableAmount

getVestingSchedule

getWithdrawableAmount

Visibility

public

external

external

external

external

external

public

public

public

public

public

public

public

public

public

public

Mutability

Modifiers

onlyOwner

onlyOwner,onlyI
fVestingSchedul
eNotRevoked

nonReentrant,o
nlyOwner

nonReentrant,o

nlyIfVestingSch

eduleNotRevoke
d

onlyIfVestingSc
heduleNotRevok
ed



Contract

TokenVesting

TokenVesting

TokenVesting

TokenVesting

TokenVesting

FuncName

computeNextVestingScheduleIdForHolder

getlLastVestingScheduleForHolder

computeVestingScheduleIdForAddressAndIndex

_computeReleasableAmount

getCurrentTime

Visibility

public

public

public

internal

internal

Mutability

Modifiers



5. Appendix

5.2 Call Graph

TokenVesting




ERC20

Legend

Internal Call
External Call
External Function
Public Function
Internal Function
Modifier

vy

ERC20

/

Context(abstract)




5. Appendix

5.3 Inheritance Graph

TokenVesting

TokenVesting
State Variables:
_token
vestingScheduleslds
vestingSchedules
vestingSchedulesTotalAmount
holdersVestingCount
Modifiers:
onlylfVestingScheduleNotRevoked()
External Functions:
receive()
fallback()
createVestingSchedule(address,uint256,uint256,uint256,uint256,bool,uint256,uint256)
revoke(bytes32)
withdraw(uint256)
Public Functions:
constructor()
release(bytes32,uint256)
getVestingSchedulesCountByBeneficiary(address)
getVestingldAtindex(uint256)
getVestingScheduleByAddressAndIndex(address,uint256)
getVestingSchedulesTotalAmount()
getToken()
getVestingSchedulesCount()
computeReleasableAmount(bytes32)
getVestingSchedule(bytes32)
getWithdrawableAmount()
computeNextVestingScheduleldForHolder(address)
getLastVestingScheduleForHolder(address)
computeVestingScheduleldForAddressAndindex(address,uint256)
Internal Functions:
_computeReleasableAmount(VestingSchedule)

getCurrentTime()

Ownable ReentrancyGuard
State Variables: State Variables:
_owner _NOT_ENTERED
Modifiers: _ENTERED
onlyOwner() _status
Public Functions: Modifiers:
constructor() nonReentrant()
owner() Public Functions:
renounceOwnership() constructor()
transferOwnership(address) _nonReentrantBefore()
Internal Functions: _nonReentrantAfter()
_checkOwner() Internal Functions:
_transferOwnership(address) _reentrancyGuardEntered()
Context
Internal Functions:
_msgSender()
_msgData()




ERC20

ERC20

State Variables:

_balances
_allowances
_totalSupply
_name
_symbol

Public Functions:

constructor()

name()

symbol()

decimals()

totalSupply()

balanceOf(address)
transfer(address,uint256)
allowance(address,address)
approve(address,uint256)
transferFrom(address,address,uint256)
increaseAllowance(address,uint256)
decreaseAllowance(address,uint256)

Internal Functions:

_transfer(address,address,uint256)
_mint(address,uint256)
_burn(address,uint256)
_approve(address,address,uint256)

_spendAllowance(address,address,uint256)
_beforeTokenTransfer(address,address,uint256)
_afterTokenTransfer(address,address,uint256)

A

Context

_msgSender()
_msgData()

Internal Functions:

IERC20
External Functions:
totalSupply()
balanceOf(address)
transfer(address,uint256)
allowance(address,address)
approve(address,uint256)

transferFrom(address,address,uint256)

IERC20Metadata
External Functions:
name()
symbol()
decimals()




