


Table of Contents
1. Overview

1.1. Executive Summary

1.2. Project Summary

1.3. Assessment Summary

1.4. Assessment Scope

2. Checklist

3. Findings

3.1. H-01 | Missing onERC721Received and onERC1155Received Implementation

3.2. H-02 | Incorrect Transfer Token to BKExchangeRouter

3.3. M-03 | Invalid _revertIfTrxFails Flag

3.4. I-04 | Warning of Potential Conflict Storage

3.5. I-05 | Length not checked

3.6. I-06 | Not Check If Market Id Exists

3.7. I-07 | Incorrect Use of ApproveMax

3.8. I-08 | Bad Use of Modifier handleDustXXX

3.9. I-09 | Not Inherited Interface

3.10. I-10 | Incompatible Interfaces and Implementations

3.11. I-11 | Redundant Code

3.12. I-12 | Use calldata Instead of memory

4. Disclaimer

5. Appendix



1. Overview
1.1. Executive Summary

The BitKeep Exchange library contains a set of smart contracts for EVM-based blockchains
(Ethereum, BNB Chain, etc.), which serves as a critical part of the BitKeep Exchange protocol.
BitKeep Exchange allows users to batch buy NFTs from different marketplaces using ethers as well
as ERC20 tokens.The security assessment was scoped to all the source code of the project as well
as any contract dependencies that were not part of an officially recognized library.
We performed a comprehensive examination in combination of Static Analysis, Formal Verification
and Manual Review techniques. In our review of the contract, 2 high, 1 medium and 9
informational issues were identified. The project team addressed all issues identified in the initial
assessment.

1.2. Project Summary

1.3. Assessment Summary

Project Name BitKeep Exchange

Platform Ethereum, BNB Chain, Polygon, Optimism, Arbitrum

Language Solidity

Code Repository https://github.com/bitkeepwallet/bkexchange

Commit ebc8de83aea4ade060193277c8d92edc19b50952

Delivery Date Dec. 19th, 2022

Audit Methodology Static Analysis, Formal Verification, Manual Review



1.4. Assessment Scope

ID File

01 contracts/BKExchangePeriphery.sol

02 contracts/BKExchangeRouter.sol

03 contracts/MarketRegistry.sol

04 contracts/BKCommon.sol

05 contracts/utils/TransferHelper.sol

06 contracts/lib/ConsiderationStructs.sol

07 contracts/lib/ConsiderationEnums.sol

08 contracts/market/SeaportMarket.sol

09 contracts/interfaces/IBKCommon.sol

10 contracts/interfaces/ISeaportMarket.sol

11 contracts/interfaces/IBKErrors.sol



2. Checklist
2.1. General Vulnerability

Reentrancy DelegateCall

Integer Overflow Input Validation

Unchecked this.call Frozen Money

Arbitrary External Call Unchecked Owner Transfer

Do-while Continue Right-To-Left-Override Character

Unauthenticated Storage Access Risk For Weak Randomness

TxOrigin Missing Checks for Return Values

Diamond Inheritance ThisBalance

VarType Deduction Array Length Manipulation

Uninitialized Variable Shadow Variable

Divide Before Multiply Function Not Working

2.2. Code Conventions

Compiler Version Improper State Variable Modification

Function Visibility Deprecated Function

Externally Controlled Variables Code Style

Constant Specific Event Specific

Return Value Unspecified Nonexistent Error Message

Reference Variable Specification Import Issue

Compare With Timestamp/Block Number/Blockhash Constructor in Base Contract Not Implemented

Delete Struct Containing the Mapping Type Usage of '=+'

Paths in the Modifier Not End with "_" or Revert Non-payable Public Functions Use msg.value

SafeMath Issue Compiler Error/Warning

ERC20/ERC721/ERC1155 Standard Specification Anti-reentry Lock Specific

Nested Function Calls Inheritance Issue

Signature Replay Risk Missing Event

2.3. Gas Optimization

Tautology Issue Loop Depends on Array Length

Redundant/Duplicated/Dead Code Code Complexity/Code Inefficiency

Undeclared Resource Optimizable Return Statement

Unused Resource Duplicate Code



2.4. Compiler Bug

Affected by Compiler Bug

2.5. Logical Issue

The Code Implementation is Consistent With Comments, Project White Papers and Other Materials

Permission Check

Address Check



3. Findings

ID Title Category Severity Status

H-01 Missing onERC721Received and
onERC1155Received Implementation Logical Issue High Resolved

H-02 Incorrect Transfer Token to
BKExchangeRouter Logical Issue High Resolved

TotalTotal
1212



ID Title Category Severity Status

M-03 Invalid _revertIfTrxFails Flag Code Conventions Medium Resolved

I-04 Warning of Potential Conflict Storage Logical Issue Informational Resolved

I-05 Length not checked Logical Issue Informational Resolved

I-06 Not Check If Market Id Exists Logical Issue Informational Resolved

I-07 Incorrect Use of ApproveMax Logical Issue Informational Resolved

I-08 Bad Use of Modifier handleDustXXX Code Conventions Informational Resolved

I-09 Not Inherited Interface Logical Issue Informational Resolved

I-10 Incompatible Interfaces and
Implementations Logical Issue Informational Resolved

I-11 Redundant Code Gas Optimization Informational Resolved

I-12 Use calldata Instead of memory Gas Optimization Informational Resolved



H-01 | Missing onERC721Received and
onERC1155Received Implementation

Description
BKExchangePeriphery will interact with seaport by delegate call to SeaportMarket, which is about 
to receive ERC721 and ERC1155 tokens. onERC721Received or onERC1155Received interfaces 
must be implemented by contracts if they want to accept tokens through safeTransferFrom.

Recommendation
We recommend to inherit OpenZeppelin IERC721Receiver and IERC1155Receiver, and implement 
onERC721Received or onERC1155Received interfaces. It is also recommended to fully test 
contracts before audit.

Alleviation
The project team deleted the buyByFulfillBasicOrder() function, therefore the BKExchangePeriphery 
no longer needs to receive NFT. The issue was resolved in commit 
7185acaba8352fc4c5987f7bc569b922d4d57841.

High : Logical Issue

File Location : contracts/BKExchangePeriphery.sol



H-02 | Incorrect Transfer Token to BKExchangeRouter

Description
In function _buyByFulfillBasicOrder, token is transferred back to BKExchangeRouter after calling 
seaport fulfillBasicOrder. As the following code snippet shows, the msg.sender is 
BKExchangeRouter. This will fail as BKExchangeRouter not implement onERC721Received nor 
onERC1155Received interfaces. 

128 if(_isERC721) {
129     

IERC721(fulfillBasicOrderBuy.basicOrderParameters.offerToken).safeTransferFrom(
130         address(this),
131         msg.sender,
132         fulfillBasicOrderBuy.basicOrderParameters.offerIdentifier
133     );
134 } else {
135     

IERC1155(fulfillBasicOrderBuy.basicOrderParameters.offerToken).safeTransferFrom(
136         address(this),
137         msg.sender,
138         fulfillBasicOrderBuy.basicOrderParameters.offerIdentifier,
139         fulfillBasicOrderBuy.basicOrderParameters.offerAmount,
140         "0x"
141     );
142 }

Recommendation
We suggest to add a receiver address in struct FulfillBasicOrderBuy to transfer the token back, 
instead of through BKExchangeRouter, as the router should not receive any token during the trade.

Alleviation
The project team deleted the buyByFulfillBasicOrder() function. The issue was resolved in commit 
7185acaba8352fc4c5987f7bc569b922d4d57841.

High : Logical Issue

File Location : contracts/market/SeaportMarket.sol:128-142



M-03 | Invalid _revertIfTrxFails Flag

Description
In the function _buyByFulfillBasicOrder, if the call to the function in the contract SEAPORT1_1 fails, 
in other words, the variable success on line 120 is false, then the ERC721 token or ERC1155 token 
should not be transferred. But in the current implementation, if both success and _revertIfTrxFails 
are false, ERC721 or ERC1155 token transfer will still be performed and resulting in revert of whole 
transaction. Thus the transaction will always revert no matter how _revertIfTrxFails flag is set.

108 function _buyByFulfillBasicOrder(
109     FulfillBasicOrderBuy calldata fulfillBasicOrderBuy,
110     bool _isERC721,
111     bool _revertIfTrxFails
112 ) internal {
113     bytes memory _data = abi.encodeWithSelector(
114         ISeaport.fulfillBasicOrder.selector,
115         fulfillBasicOrderBuy.basicOrderParameters
116     );
117  
118     (bool success, ) = SEAPORT1_1.call{value: 

fulfillBasicOrderBuy.currentPrice}(_data);
119  
120     if (!success && _revertIfTrxFails) {
121         // Copy revert reason from call
122         assembly {
123             returndatacopy(0, 0, returndatasize())
124             revert(0, returndatasize())
125         }
126     }
127  
128     if(_isERC721) {
129         

IERC721(fulfillBasicOrderBuy.basicOrderParameters.offerToken).safeTransferFrom(
130             address(this),
131             msg.sender,
132             fulfillBasicOrderBuy.basicOrderParameters.offerIdentifier
133         );
134     } else {
135         

IERC1155(fulfillBasicOrderBuy.basicOrderParameters.offerToken).safeTransferFrom(
136             address(this),
137             msg.sender,
138             fulfillBasicOrderBuy.basicOrderParameters.offerIdentifier,
139             fulfillBasicOrderBuy.basicOrderParameters.offerAmount,
140             "0x"
141         );
142     }
143 }

Medium : Code Conventions

File Location : contracts/market/SeaportMarket.sol:108-143



Recommendation
It is recommended to judge the variables success and _revertIfTrxFails separately as below.

1 if (success) {
2     if(_isERC721) {
3         

IERC721(fulfillBasicOrderBuy.basicOrderParameters.offerToken).safeTransferFrom(
4           address(this),
5           msg.sender,
6           fulfillBasicOrderBuy.basicOrderParameters.offerIdentifier
7       );
8     } else {
9         

IERC1155(fulfillBasicOrderBuy.basicOrderParameters.offerToken).safeTransferFrom(
10           address(this),
11           msg.sender,
12           fulfillBasicOrderBuy.basicOrderParameters.offerIdentifier,
13           fulfillBasicOrderBuy.basicOrderParameters.offerAmount,
14           "0x"
15       );
16     }
17 } else if (_revertIfTrxFails) {
18     // Copy revert reason from call
19     assembly {
20         returndatacopy(0, 0, returndatasize())
21         revert(0, returndatasize())
22     }
23 }

Alleviation
The project team deleted the buyByFulfillBasicOrder() function. The issue was resolved in commit 
7185acaba8352fc4c5987f7bc569b922d4d57841.



I-04 | Warning of Potential Conflict Storage

Description
If _isLib is ture, the function will execute _proxy.delegatecall(xxx). The BKExchangePeriphery 
contract has already taken the first 4 slot. Here may have storage conflict between the 
BKExchangePeriphery contract and the _proxy contract,  if the _isLib flag do not indicate a library 
contract.

112 function _trade(
113     TradeDetails[] memory _tradeDetails,
114     address _userAddr,
115     bool _requireAllSuccess
116 ) internal {
117     for (uint256 i = 0; i < _tradeDetails.length; i++) {
118         (address _proxy, bool _isLib, bool _isActive) = 

marketRegistry.markets(_tradeDetails[i].marketId);
119         require(_isActive, "_trade: InActive Market");
120  
121         (bool success, bytes data) = _isLib
122             ? _proxy.delegatecall(_tradeDetails[i].tradeData)
123             : _proxy.call{value:_tradeDetails[i].value}

(_tradeDetails[i].tradeData);
124  
125         if(_requireAllSuccess) _checkCallResult(success);
126         if(!success){
127             emit TradeError(_userAddr, i, _tradeDetails[i], data);
128         }
129     }
130 }

Storage layout of BKExchangePeriphery

1 +-----------------------------------+--------------------------+------+-------+
2 |                Name               |           Type           | Slot | Offset|
3 +-----------------------------------+--------------------------+------+-------+
4 |           Ownable._owner          |         address          |  0   |   0   |
5 |          Pausable._paused         |           bool           |  0   |   20  |
6 |      ReentrancyGuard._status      |         uint256          |  1   |   0   |
7 |        BKCommon.isOperator        | mapping(address => bool) |  2   |   0   |
8 |     BKExchangePeriphery.bkswap    |         address          |  3   |   0   |
9 | BKExchangePeriphery.openForTrades |           bool           |  3   |   20  |
10 | BKExchangePeriphery.marketRegistry|      MarketRegistry      |  4   |   0   |
11 +-----------------------------------+--------------------------+------+-------+

Recommendation
Please make sure there is no storage conflict between the BKExchangePeriphery contract and the 
_proxy contract, aka, make sure the _isLib flag do indicate a library contract.

Informational : Logical Issue

File Location : contracts/BKExchangePeriphery.sol,contracts/MarketRegistry.sol



Alleviation
The project team is aware of this issue and will be careful in subsequent development.



I-05 | Length not checked

Description
Whether or not the length of _tokenIns and _amountIns are same is not checked in 
BKExchangeRouter.sol.
 Whether or not the length of ids and amounts are same is not checked in BKCommon.sol.
 Whether or not the length of proxies and isLibs are same is not checked in MarketRegistry.sol.
contracts/BKExchangeRouter.sol

15 function runWithERC20s(
address[] calldata _tokenIns, uint256[] calldata _amountIns, bytes calldata 
_data
)

16 external
17 payable
18 whenNotPaused
19 nonReentrant
20 {
21     for (uint256 i = 0; i < _tokenIns.length; i++) {
22         TransferHelper.safeTransferFrom(
23             _tokenIns[i],
24             msg.sender,
25             BK_EXCHANGE,
26             _amountIns[i]
27         );
28     }
29  
30     (bool success, bytes memory resultData) = BK_EXCHANGE.call{
31         value : msg.value
32     }(_data);
33  
34     if (!success) {
35         _revertWithData(resultData);
36     }
37 }

contracts/BKCommon.sol

63 function rescueERC1155(
address asset, uint256[] calldata ids, uint256[] calldata amounts, address 
recipient
) onlyOwner external 
{

64     for (uint256 i = 0; i < ids.length; i++) {
65         IERC1155(asset).safeTransferFrom(address(this), recipient, ids[i], 

amounts[i], "");
66     }
67     emit RescueERC1155(asset, recipient, ids, amounts);
68 }

Informational : Logical Issue

File Location : contracts/BKExchangeRouter.sol:15, contracts/BKCommon.sol:63, 
contracts/MarketRegistry.sol: 20



contracts/MarketRegistry.sol

20 constructor(address[] memory proxies, bool[] memory isLibs, address _owner) {
21     for (uint256 i = 0; i < proxies.length; i++) {
22         markets.push(Market(proxies[i], isLibs[i], true));
23         emit SetMarketProxy(i, Market(proxies[i], isLibs[i], true));
24     }
25     _transferOwnership(_owner);
26 }

Recommendation
We recommend to add length check in above functions or front-end application.

Alleviation
The project team added length check to above functions. The issue was resolved in commit 
7185acaba8352fc4c5987f7bc569b922d4d57841.



I-06 | Not Check If Market Id Exists

Description
In the function _trade, when obtaining market information through the marketId stored in the 
parameter _tradeDetails, if the marketId exceeds the length of marketRegistry.markets, the 
transaction will be directly reverted without a clear revert reason.

112 function _trade(
113     TradeDetails[] memory _tradeDetails,
114     address _userAddr,
115     bool _requireAllSuccess
116 ) internal {
117     for (uint256 i = 0; i < _tradeDetails.length; i++) {
118         (address _proxy, bool _isLib, bool _isActive) = 

marketRegistry.markets(_tradeDetails[i].marketId);
119         require(_isActive, "_trade: InActive Market");
120  
121         (bool success, bytes data) = _isLib
122             ? _proxy.delegatecall(_tradeDetails[i].tradeData)
123             : _proxy.call{value:_tradeDetails[i].value}

(_tradeDetails[i].tradeData);
124  
125         if(_requireAllSuccess) _checkCallResult(success);
126         if(!success){
127             emit TradeError(_userAddr, i, _tradeDetails[i], data);
128         }
129     }
130 }

Recommendation
We recommend to add length check in above function or front-end application.

Alleviation
The project team added marketId check. The issue was resolved in commit 
7185acaba8352fc4c5987f7bc569b922d4d57841.

Informational : Logical Issue

File Location : contracts/BKExchangePeriphery.sol:118



I-07 | Incorrect Use of ApproveMax

Description
Set the 3rd parameter of TransferHelper.approveMax as type(uint256).max will constantly call 
safeApprove, which violates the purpose of TransferHelper.approveMax to only approve once to 
save gas.
contracts/BKExchangePeriphery.sol

132 function _approveToSwap(
133     address[] calldata _allTokens
134 ) internal {
135     for (uint256 i = 0; i < _allTokens.length; i++) {
136         TransferHelper.approveMax(_allTokens[i], bkswap, type(uint256).max);
137     }
138 }

contracts/utils/TransferHelper.sol

82 function approveMax(
83     IERC20 _token,
84     address _spender,
85     uint256 _amount
86 ) internal {
87     uint256 allowance = _token.allowance(address(this), address(_spender));
88     if (allowance < _amount) {
89         if (allowance > 0) {
90             _token.safeApprove(address(_spender), 0);
91         }
92         _token.safeApprove(address(_spender), type(uint256).max);
93     }
94 }

Recommendation
Set the 3rd parameter of TransferHelper.approveMax as actual swap amount of current transaction 
token amount, just like AggregationFeature.sol. If this value is not accessible, it can be set as 
type(uint256).max/2.

1 function _approveToSwap(
2     address[] calldata _allTokens
3 ) internal {
4     for (uint256 i = 0; i < _allTokens.length; i++) {
5         TransferHelper.approveMax(IERC20(_allTokens[i]), bkswap, type(uint256).

max/2);
6     }
7 }

Alleviation

Informational : Logical Issue

File Location : contracts/BKExchangePeriphery.sol:136



The project team followed our advice and updated the code in commit 
7185acaba8352fc4c5987f7bc569b922d4d57841.



I-08 | Bad Use of Modifier handleDustXXX

Description
The handleDustETH and handleDustERC20s functions are implemented as modifiers, which is not a 
common practice. Modifiers are usually used in access control scenarios, or to avoid redundant 
code, or both. handleDustETH and handleDustERC20s are neither access control nor redundant 
code, which should not be implemented as modifiers.

58 modifier handleDustETH(address _userAddr) {
59     _;
60  
61     uint256 newBalance = address(this).balance;
62     if(newBalance > 0){
63         TransferHelper.safeTransferETH(_userAddr, newBalance);
64     }
65 }
66  
67 modifier handleDustERC20s(address[] calldata _allTokens, address _userAddr) {
68     _;
69  
70     uint256 newBalance = address(this).balance;
71     if (newBalance > 0) {
72         TransferHelper.safeTransferETH(_userAddr, newBalance);
73     }
74  
75     for (uint256 i = 0; i < _allTokens.length; i++) {
76         uint256 erc20NewBalance = IERC20(_allTokens[i]).balanceOf(address(this

));
77  
78         if(erc20NewBalance > 0){
79             TransferHelper.safeTransfer(
80                 _allTokens[i],
81                 _userAddr,
82                 erc20NewBalance
83             );
84         }
85     }
86 }

Recommendation
Define handleDustETH and handleDustERC20s as internal functions to improve code readability. 
Remove ETH handling logic in handleDustERC20s to further clarify the code logic.

Alleviation
The project team followed our advice and updated the code in commit 
7185acaba8352fc4c5987f7bc569b922d4d57841.

Informational : Code Conventions

File Location : contracts/BKExchangePeriphery.sol:58,67



I-09 | Not Inherited Interface

Description
The IBKCommon interface are not inherited by the BKCommon contract.IBKCommon.sol
IBKCommon.sol

1 +------------------------------+------------+
2 |             Name             |     ID     |
3 +------------------------------+------------+
4 | setOperator(address[],bool)  | 0x1ed6144e |
5 |           pause()            | 0x8456cb59 |
6 |          unpause()           | 0x3f4ba83a |
7 |      rescueETH(address)      | 0x04824e70 |
8 | rescueERC20(address,address) | 0x5d799f87 |
9 +------------------------------+------------+

BKCommon.sol

1 +----------------------------------------------------+------------+
2 |                    Name                            |            |
3 +----------------------------------------------------+------------+
4 |            setOperator(address[],bool)             | 0x1ed6144e |
5 |                      pause()                       | 0x8456cb59 |
6 |                     unpause()                      | 0x3f4ba83a |
7 |            rescueERC20(address,address)            | 0x5d799f87 |
8 |      rescueERC721(address,uint256[],address)       | 0x26e2dca2 | -- missing
9 | rescueERC1155(address,uint256[],uint256[],address) | 0xb7ce33a2 | -- missing
10 |                 rescueETH(address)                 | 0x04824e70 |
11 |                     receive()                      |            |
12 +----------------------------------------------------+------------+

Recommendation
We recommend to inherit IBKCommon interface in BKCommon contract.
BKCommon.sol

1 import "./interfaces/IBKCommon.sol";
2  
3 contract BKCommon is IBKCommon, IBKErrors, Ownable, Pausable, ReentrancyGuard {

Alleviation
The project team followed our advice and updated the code in commit 
7185acaba8352fc4c5987f7bc569b922d4d57841.

Informational : Logical Issue

File Location : contracts/interfaces/IBKCommon.sol, contracts/BKCommon.sol



I-10 | Incompatible Interfaces and Implementations

Description
1. Funciton-IDs of buyByFulfillBasicOrder, buyByFulfillAdvancedOrder and 
buyByFulfillAvailableAdvancedOrders in the ISeaportMarket interface are not the same as 
SeaportMarket contract. Therefore, any contract calling functions in ISeaportMarket may fail or 
suffer unexpected behaviors. An use case is showed below. When executing the encoded _data, 
the buyByFulfillBasicOrder function cannot be found, the execution fails or suffers unexpected 
behaviors depending on whether or not there is a default fallback() function.

2. Functions fulfillBasicOrder, fulfillAdvancedOrder and fulfillAvailableAdvancedOrders are not 
implemented anywhere. In addition, those functions are the same with ISeaport interface, which 
are redundant. We recommend to delete them (refer to the recommendation section).
contracts/market/SeaportMarket.sol

113 bytes memory _data = abi.encodeWithSelector(
114     ISeaport.fulfillBasicOrder.selector,
115     fulfillBasicOrderBuy.basicOrderParameters
116 );

Function Signature of ISeaportMarket

1 +----------------------------------------+------------+
2 |     Name                               |     ID     |
3 +----------------------------------------+------------+
4 | fulfillBasicOrder                      | 0xde869052 | -- missing in contract
5 | fulfillAdvancedOrder                   | 0x5eb295ef | -- missing in contract
6 | fulfillAvailableAdvancedOrders         | 0x9a3d9c0b | -- missing in contract
7 | buyByFulfillBasicOrder                 | 0xabe88584 | -- mismatch
8 | buyByFulfillAdvancedOrder              | 0x17d6f071 | -- mismatch
9 | buyByFulfillAvailableAdvancedOrders    | 0x67f2dcab | -- mismatch
10 +----------------------------------------+------------+

Function Signature of SeaportMarket

1 +-----------------------------------------+------------+
2 |           Name                          |     ID     |
3 +-----------------------------------------+------------+
4 | buyByFulfillBasicOrder                  | 0x026a04cf |
5 | buyByFulfillAvailableAdvancedOrders     | 0x91392c2c |
6 | buyByFulfillAdvancedOrder               | 0x24160d74 |
7 | rescueETH                               | 0x04824e70 |
8 | rescueERC20                             | 0x5d799f87 |
9 | rescueERC721                            | 0x26e2dca2 |
10 | rescueERC1155                           | 0xb7ce33a2 |
11 | SEAPORT1_1()                            | 0xaa8a3a25 |
12 | Owner()                                 | 0xb4a99a4e |
13 +-----------------------------------------+------------+

Informational : Logical Issue

File Location : 



Function Signature of ISeaport

1 +-----------------------------------------+------------+
2 |      Name                               |     ID     |
3 +-----------------------------------------+------------+
4 | fulfillBasicOrder                       | 0xde869052 |
5 | fulfillAdvancedOrder                    | 0x5eb295ef |
6 | fulfillAvailableAdvancedOrders          | 0x9a3d9c0b |
7 +-----------------------------------------+------------+

Recommendation
1. Either change interface file or implementation file to make sure the functions in interface and 
implementation have the same function ids.

2. As the fulfillBasicOrder fulfillAdvancedOrder and fulfillAvailableAdvancedOrders are the same 
with those in ISeaport, we recommend to delete the redundant functions in ISeaportMarket.

Alleviation
1. The project team deleted the redundant code in ISeaportMarket.

2. The project team deleted several functions in ISeaportMarket. However the functions remained 
still have different function ids with those in SeaportMarket contract. It is a very tricky situation. 
The EVM compiler(above 0.8 was tested) treats interface and library differently when calculate 
function ids(signatures) in the situation that the function parameter(s) contains struct(s). If it is a 
interface, the compiler will expand the struct, then calculate the function id. However, if it is a 
library, the compiler will not expand the struct, instead, it will use struct name to calculate the 
function id. Therefore, it is not possible to achieve the same function id between interface and 
library in this situation. 
The project team was aware of this issue. They manually modified the function ids in the ABI file of 
ISeaportMarket interface, making them consistent with contract SeaportMarket.



I-11 | Redundant Code

Description
The following functions in a library contract are useless:
● rescueETH 
● rescueERC20 
● rescueERC721 
● rescueERC1155 
● _transferEth

Recommendation
Remove above functions from SeaportMarket.

Alleviation
The project team deleted the redundant code. The issue was resolved in commit 
7185acaba8352fc4c5987f7bc569b922d4d57841.

Informational : Gas Optimization

File Location : contracts/market/SeaportMarket.sol:212-242



I-12 | Use calldata Instead of memory

Description
Parameters of fulfillAdvancedOrder() in ISeaport interface are stored in memory, which will cost 
more gas.
Parameters of buyByFulfillAvailableAdvancedOrders() and _buyByFulfillAvailableAdvancedOrders() 
are stored in memory, which will cost more gas.
Parameter TradeDetails of _trade is stored in memory, which will cost more gas.
contracts/market/SeaportMarket.sol

25 function fulfillAdvancedOrder( 
26     AdvancedOrder memory advancedOrder,
27     CriteriaResolver[] memory criteriaResolvers,
28     bytes32 fulfillerConduitKey,
29     address recipient
30  ) external payable returns (bool fulfilled);

contracts/market/SeaportMarket.sol

145 function buyByFulfillAvailableAdvancedOrders(
146     FulfillAvailableAdvancedOrdersBuy[] memory 

fulfillAvailableAdvancedOrdersBuys,
147     bool revertIfTrxFails
148 ) public {
149     for(uint i = 0; i < fulfillAvailableAdvancedOrdersBuys.length; i++) {
150         

_buyByFulfillAvailableAdvancedOrders(fulfillAvailableAdvancedOrdersBuys[i], 
revertIfTrxFails);

151     }
152 }
153  
154 function _buyByFulfillAvailableAdvancedOrders(
155     FulfillAvailableAdvancedOrdersBuy memory 

fulfillAvailableAdvancedOrdersBuy,
156     bool _revertIfTrxFails
157 ) internal {

contracts/BKExchangePeriphery.sol

112 function _trade(
113     TradeDetails[] memory _tradeDetails,
114     address _userAddr,
115     bool _requireAllSuccess
116 ) internal {

Recommendation
We recommend to use calldata instead of memory to save gas.

Informational : Gas Optimization

File Location : contracts/market/SeaportMarket.sol: 26, 27, 146, 155, 
contracts/BKExchangePeriphery.sol:112



Alleviation
The project team changed memory type to calldata type to the issues mentioned above.



4. Disclaimer
No description, statement, recommendation or conclusion in this report shall be construed as
endorsement, affirmation or confirmation of the project. The security assessment is limited to the
scope of work as stipulated in the Statement of Work.

This report is prepared in response to source code, and based on the attacks and vulnerabilities in
the source code that already existed or occurred before the date of this report, excluding any new
attacks or vulnerabilities that exist or occur after the date of this report. The security assessment
are solely based on the documents and materials provided by the customer, and the customer
represents and warrants documents and materials are true, accurate and complete.

CONSULTANT DOES NOT MAKE AND HEREBY DISCLAIMS ANY REPRESENTATIONS OR WARRANTIES
OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, REGARDING THE
SERVICES, DELIVERABLES, OR ANY OTHER MATTER PERTAINING TO THIS REPORT.

CONSULTANT SHALL NOT BE RESPONSIBLE FOR AND HEREBY DISCLAIMS MERCHANTABILITY,
FITNESS FOR PURPOSE, TITLE, NON-INFRINGEMENT OR NON-APPROPRIATION OF INTELLECTUAL
PROPERTY RIGHTS OF A THIRD PARTY, SATISFACTORY QUALITY, ACCURACY, QUALITY,
COMPLETENESS, TIMELINESS, RESPONSIVENESS, OR PRODUCTIVITY OF THE SERVICES OR
DELIVERABLES.

CONSULTANT EXCLUDES ANY WARRANTY THAT THE SERVICES AND DELIVERABLES WILL BE
UNINTERRUPTED, ERROR FREE, FREE OF SECURITY DEFECTS OR HARMFUL COMPONENTS, REVEAL
ALL SECURITY VULNERABILITIES, OR THAT ANY DATA WILL NOT BE LOST OR CORRUPTED.

CONSULTANT SHALL NOT BE RESPONSIBLE FOR (A) ANY REPRESENTATIONS MADE BY ANY
PERSON REGARDING THE SUFFICIENCY OR SUITABILITY OF SERVICES AND DELIVERABLES IN
ANY ACTUAL APPLICATION, OR (B) WHETHER ANY SUCH USE WOULD VIOLATE OR INFRINGE THE
APPLICABLE LAWS, OR (C) REVIEWING THE CUSTOMER MATERIALS FOR ACCURACY.



5. Appendix
5.1 Visibility

Contract FuncName Visibility Mutability Modifiers

BKCommon setOperator external Y onlyOwner

BKCommon pause external Y onlyOperator

BKCommon unpause external Y onlyOperator

BKCommon rescueERC20 external Y onlyOperator

BKCommon rescueERC721 external Y onlyOperator

BKCommon rescueERC1155 external Y onlyOperator

BKCommon rescueETH external Y onlyOperator

BKCommon _transferEth internal Y

BKCommon _revertWithData internal N

BKCommon receive external N

MarketRegistry _CTOR_ public Y

MarketRegistry marketsLength public N

MarketRegistry addMarket external Y onlyOwner

MarketRegistry setMarketStatus external Y onlyOwner

MarketRegistry setMarketProxy external Y onlyOwner

BKExchangePeriphery _CTOR_ public Y



Contract FuncName Visibility Mutability Modifiers

BKExchangePeriphery setBKSwapAddress external Y onlyOwner

BKExchangePeriphery setMarketRegistry external Y onlyOwner

BKExchangePeriphery batchBuyWithETH external Y whenNotPaused,
nonReentrant

BKExchangePeriphery batchBuyWithERC2
0s external Y whenNotPaused,

nonReentrant

BKExchangePeriphery _trade internal Y

BKExchangePeriphery _approveToSwap internal Y

BKExchangePeriphery _swapToDesired internal Y

BKExchangePeriphery _handleDustETH internal Y

BKExchangePeriphery _handleDustERC20
s internal Y

BKExchangePeriphery _checkCallResult internal N

BKExchangePeriphery setOneTimeApprov
al external Y onlyOwner

BKExchangeRouter _CTOR_ public Y

BKExchangeRouter runWithERC20s external Y whenNotPaused,
nonReentrant

BKExchangeRouter runWithETH external Y whenNotPaused,
nonReentrant



5. Appendix
5.2 Call Graph

contracts/BKExchangePeriphery.sol



contracts/BKExchangeRouter.sol



5. Appendix
5.3 Inheritance Graph

contracts/BKExchangePeriphery.sol



contracts/BKExchangeRouter.sol


