
Mar. 15th, 2023

Security Assessment

LabsGroup

Express Service

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

Table of Contents
1. Overview

1.1. Project Summary

1.2. Assessment Summary

1.3. Assessment Scope

2. Checklist

3. Findings

3.1. I-01 | Incompatible with BEP20 Standard

3.2. I-02 | Floating Pragma

3.3. I-03 | Long String in require

3.4. I-04 | Code layout Conventions

3.5. I-05 | Unused Internal Function

3.6. I-06 | Variables Can Be Constants

3.7. I-07 | Function Visibility Can Be External

4. Disclaimer

5. Appendix

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

1. Overview
1.1. Project Summary

1.2. Assessment Summary

1.3. Assessment Scope

ID File

Project Name LabsGroup

Platform BSC Network

Language Solidity

Code Repository

audited codebase :
https://testnet.bscscan.com/address/0x013650Adeb00583c84FF955E
5F17f5C6616D5fEA#code
updated codebase :
https://bscscan.com/address/0x510Ca7D22A84599e7d0f15F09E6740
56a6255389#code

Delivery Date Mar. 15th, 2023

Audit Methodology Static Analysis, Formal Verification

01 LabsGroup.sol

02 interface/IBEP20.sol

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

2. Checklist
2.1. Code Security

Reentrancy Integer Overflow

DelegateCall Frozen Money

Broken Functionalities Arbitrary External Call

Unauthenticated Storage Access Right-To-Left-Override Character

Misuse of tx.origin Weak Sources of Randomness

Diamond Inheritance Unchecked Call Return Value

VarType Deduction Strict Balance Checking

Uninitialized Variables Externally Controlled Array Length

Division Before Multiplication Shadowing State Variables

Affected by Compiler Bug MsgValue In Loop

DelegateCall In Loop Incorrect EIP712 Signature Encode

Incorrect Shift In Assembly

2.2. Optimization Suggestion

2.2.1 Code Convention

Shadowing Local Variables Risk of Low-Level Calls

ERC20/ERC721/ERC777 Token Standard Compiler Version Security

Code Style Risk of External Calls

Return Value Specifications Revert Specifications

Error Message Specifications Reference Variable Specifications

Import Specifications Function Visibility Specifications

Constant Specifications Global Variable Dependency

Constructor Validation Array Length Manipulation

State Write Specifications Event Specifications

Usage of Incorrect Operator Modifier Specifications

Risk of Signature Replay Usage of SafeMath Library

Risks of Using Assembly Loop Specifications

Inheritance Specifications Input Validation

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

3. Findings

Code Security

Total: 0, no vulnerabilities.

Optimization Suggestion

Total: 7, Informational: 7

ID Title Category Severity Status

I-01 Incompatible with BEP20 Standard Optimization Suggestion Informational Resolved

I-02 Floating Pragma Optimization Suggestion Informational Resolved

I-03 Long String in require Optimization Suggestion Informational Acknowledged

I-04 Code layout Conventions Optimization Suggestion Informational Acknowledged

I-05 Unused Internal Function Optimization Suggestion Informational Resolved

I-06 Variables Can Be Constants Optimization Suggestion Informational Resolved

I-07 Function Visibility Can Be External Optimization Suggestion Informational Resolved

TotalTotal
77

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

I-01 | Incompatible with BEP20 Standard

Description
In BEP20 standard, there is a function getOwner() which is an extended method of EIP20. Tokens
which don’t implement this method will never flow across the BNB Beacon Chain and BNB Smart
Chain. But contract LabsGroup doesn't implement the function getOwner().

Recommendation
It is recommended to implement function getOwner() as follows:

1 function getOwner() external view returns (address) {
2 return owner();
3 }

Alleviation
The project team added the getOwner() function. The issue was resolved in
https://bscscan.com/address/0x510Ca7D22A84599e7d0f15F09E674056a6255389#code.

Category : Optimization Suggestion

Severity : Informational

File Location : LabsGroup.sol

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

I-02 | Floating Pragma

Description
An unlocked compiler version in the source code of the contract permits the user to compile it at or
above a particular version.
This, in turn, leads to differences in the generated bytecode between compilations due to differing
compiler version numbers.
This can lead to an ambiguity when debugging as compiler specific bugs may occur in the codebase
that would be hard to identify over a span of multiple compiler versions rather than a specific one.

2 pragma solidity ^0.8.0;

Recommendation
Lock the pragma version and also consider known bugs
(https://github.com/ethereum/solidity/releases) for the compiler version that is chosen.

Alleviation
The project team followed our advice and updated the code in
https://bscscan.com/address/0x510Ca7D22A84599e7d0f15F09E674056a6255389#code.

Category : Optimization Suggestion

Severity : Informational

File Location : LabsGroup.sol:2, interface/IBEP20.sol:2

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

I-03 | Long String in require

Description
Compared to using function require, using CustomError is more gas efficient, especially when the
string parameter in the require function exceeds 32 bytes. Because the error message described
using CustomError is only compiled into four bytes.

1 // loc:109
2 require(currentAllowance >= amount, "BEP20: transfer amount exceeds allowance"

);
3 // loc:150
4 require(currentAllowance >= subtractedValue,

"BEP20: decreased allowance below zero");
5 // loc:172
6 require(sender != address(0), "BEP20: transfer from the zero address");
7 // loc:173
8 require(recipient != address(0), "BEP20: transfer to the zero address");
9 // loc:176
10 require(senderBalance >= amount, "BEP20: transfer amount exceeds balance");
11 // loc:196
12 require(account != address(0), "BEP20: mint to the zero address");
13 // loc:245
14 require(owner != address(0), "BEP20: approve from the zero address");
15 // loc:246
16 require(spender != address(0), "BEP20: approve to the zero address");

Recommendation
When reverting, it is recommended to use CustomError instead of ordinary strings to describe the
error message. Examples are as follows:

1 error ZeroAddress(address addr);
2
3 function func(address sender) public {
4 if (sender == address(0))
5 revert ZeroAddress(sender);
6 ······
7 }

Alleviation
The project team acknowledged the issue.

Category : Optimization Suggestion

Severity : Informational

File Location : LabsGroup.sol: 109, 150, 172, 173, 176, 196, 245, 246

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

I-04 | Code layout Conventions

Description
In the solidity document(https://docs.soliditylang.org/en/v0.8.17/style-guide.html), there are the
following conventions for code layout:

Layout contract elements in the following order: 1. Pragma statements, 2. Import statements, 3.
Interfaces, 4. Libraries, 5. Contracts.

Inside each contract, library or interface, use the following order: 1. Type declarations, 2. State
variables, 3. Events, 4. Modifiers, 5. Functions.

Functions should be grouped according to their visibility and ordered: 1. constructor, 2. receive
function (if exists), 3. fallback function (if exists), 4. external, 5. public, 6. internal, 7. private.

Recommendation
Recommended to Follow Code layout Conventions.

Alleviation
The project team acknowledged the issue.

Category : Optimization Suggestion

Severity : Informational

File Location : LabsGroup.sol, interface/IBEP20.sol

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

I-05 | Unused Internal Function

Description
Internal function _burn is defined but not called by the contract.

217 function _burn(address account, uint256 amount) internal {
218 require(account != address(0), "BEP20: burn from the zero address");
219
220
221 uint256 accountBalance = balanceOf(account);
222 require(accountBalance >= amount, "BEP20: burn amount exceeds balance");
223 unchecked {
224 _balances[account] = accountBalance - amount;
225 // Overflow not possible: amount <= accountBalance <= totalSupply.
226 _totalSupply -= amount;
227 }
228 emit Transfer(account, address(0), amount);
229 }

Recommendation
It is recommended to remove function _burn in the contract.

Alleviation
The project team followed our advice and updated the code in
https://bscscan.com/address/0x510Ca7D22A84599e7d0f15F09E674056a6255389#code.

Category : Optimization Suggestion

Severity : Informational

File Location : LabsGroup.sol: 217-229

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

I-06 | Variables Can Be Constants

Description
There are unchanging state variables _name, _symbol and _decimals can be declared as constant
to save gas.

14 string private _name;
15 string private _symbol;
16 uint8 private _decimals;

Recommendation
Change variables _name, _symbol and _decimals to constant.

Alleviation
The project team followed our advice and updated the code in
https://bscscan.com/address/0x510Ca7D22A84599e7d0f15F09E674056a6255389#code.

Category : Optimization Suggestion

Severity : Informational

File Location : LabsGroup.sol: 14, 15, 16

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

I-07 | Function Visibility Can Be External

Description
Following functions in contract LabsGroup will never be called by the contract and should be
modified to external functions. External functions are more efficient than public functions.

128 function increaseAllowance(address spender, uint256 addedValue) public returns
(bool)
{

129 _approve(_msgSender(), spender, allowance(_msgSender(), spender) +
addedValue);

130 return true;
131 }

147 function decreaseAllowance(address spender, uint256 subtractedValue) public
returns (bool)
{

148 address owner = _msgSender();
149 uint256 currentAllowance = allowance(owner, spender);
150 require(currentAllowance >= subtractedValue,

"BEP20: decreased allowance below zero");
151 unchecked {
152 _approve(owner, spender, currentAllowance - subtractedValue);
153 }
154 return true;
155 }

Recommendation
Functions that are not called in the contract should be declared as external.

Alleviation
The project team followed our advice and updated the code in
https://bscscan.com/address/0x510Ca7D22A84599e7d0f15F09E674056a6255389#code.

Category : Optimization Suggestion

Severity : Informational

File Location : LabsGroup.sol: 128-131, 147-155

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

4. Disclaimer
No description, statement, recommendation or conclusion in this report shall be construed as
endorsement, affirmation or confirmation of the project. The security assessment is limited to the
scope of work as stipulated in the Statement of Work.

This report is prepared in response to source code, and based on the attacks and vulnerabilities in
the source code that already existed or occurred before the date of this report, excluding any new
attacks or vulnerabilities that exist or occur after the date of this report. The security assessment
are solely based on the documents and materials provided by the customer, and the customer
represents and warrants documents and materials are true, accurate and complete.

CONSULTANT DOES NOT MAKE AND HEREBY DISCLAIMS ANY REPRESENTATIONS OR WARRANTIES
OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, REGARDING THE
SERVICES, DELIVERABLES, OR ANY OTHER MATTER PERTAINING TO THIS REPORT.

CONSULTANT SHALL NOT BE RESPONSIBLE FOR AND HEREBY DISCLAIMS MERCHANTABILITY,
FITNESS FOR PURPOSE, TITLE, NON-INFRINGEMENT OR NON-APPROPRIATION OF INTELLECTUAL
PROPERTY RIGHTS OF A THIRD PARTY, SATISFACTORY QUALITY, ACCURACY, QUALITY,
COMPLETENESS, TIMELINESS, RESPONSIVENESS, OR PRODUCTIVITY OF THE SERVICES OR
DELIVERABLES.

CONSULTANT EXCLUDES ANY WARRANTY THAT THE SERVICES AND DELIVERABLES WILL BE
UNINTERRUPTED, ERROR FREE, FREE OF SECURITY DEFECTS OR HARMFUL COMPONENTS, REVEAL
ALL SECURITY VULNERABILITIES, OR THAT ANY DATA WILL NOT BE LOST OR CORRUPTED.

CONSULTANT SHALL NOT BE RESPONSIBLE FOR (A) ANY REPRESENTATIONS MADE BY ANY
PERSON REGARDING THE SUFFICIENCY OR SUITABILITY OF SERVICES AND DELIVERABLES IN
ANY ACTUAL APPLICATION, OR (B) WHETHER ANY SUCH USE WOULD VIOLATE OR INFRINGE THE
APPLICABLE LAWS, OR (C) REVIEWING THE CUSTOMER MATERIALS FOR ACCURACY.

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

5. Appendix
5.1 Visibility

Contract FuncName Visibility Mutability Modifiers

LabsGroup _CTOR_ public Y

LabsGroup decimals external N

LabsGroup symbol external N

LabsGroup name external N

LabsGroup totalSupply external N

LabsGroup balanceOf public N

LabsGroup getOwner external N

LabsGroup transfer external Y

LabsGroup allowance public N

LabsGroup approve external Y

LabsGroup transferFrom external Y

LabsGroup increaseAllowance external Y

LabsGroup decreaseAllowance external Y

LabsGroup _transfer internal Y

LabsGroup _mint internal Y

LabsGroup _approve internal Y

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

5. Appendix
5.2 Call Graph

LabsGroup.sol

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

5. Appendix
5.3 Inheritance Graph

LabsGroup.sol

BBAAD9C20180234D78A0072836F0B61042B9B20C1255AB70A8D98C3CB1C12BDBDB46BD38A151AB0A22C920089846A8EBADF921DA31D0CBB11BBFC253747E3DDC24180EAD9720B987749F2997672743CE9B21E4AC722F27A6F8DA1198276EBC38D8D62494BE3

